Maths Medium Term Overview - Year 3 \& Year 4
AUTUMN TERM

WEEK 1			
Time - 1 Week			
Time		Time	
WEEK 2			
Number and Place Value - $311 / 2$ Weeks			
Unit 1 Place Value within 1,000		Unit 1 Place Value - 4-digit numbers (1)	
L1 Represent and partition numbers to 100	Represent and partition numbers to 100 using a variety of representations	L1 Represent and partition numbers to 1,000	Represent 3-digit numbers in a variety of ways Identify the value of each digit
L2 Number line to 100	Identify and label numbers within 100 on a number line	L2 Number line to 1,000	Label intervals Recognise and place given numbers on number lines
L3 100s	Count in 100s from 0 to 1,000 forward and backwards Understand what 100 is and the different ways of representing it Write the numbers in both numerals and words	L3 Multiples of 1,000	Count in 1,000 s from 0 to 10,000, forwards and backwards Recognise multiples of 1,000 in different representations
L4 Represent numbers to 1,000	Identify and represent numbers using place value grids and counters	L4 4-digit numbers	Identify the value of each digit in a 4-digit number
L5 Partition numbers to 1,000	Use base 10 equipment and part-whole models to represent numbers to 1,000 Understand that a number up to 1,000 is made up of some 100 s , some 10 s and some 1 s	L5 Partition 4-digit numbers	Partition and recombine 4-digit numbers into $1,000 \mathrm{~s}, 100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s
WEEK 3			
L6 Partition numbers to 1,000 flexibly	Recognise that a 3-digit number can be partitioned in different ways	L6 Partition 4-digit numbers flexibly	Explore partitioning 4-digit numbers in various ways
L7 100s, 10s and 1s	Identify and represent numbers in place value grids using counters	L8 1,000s, 100s, 10s and 1s (moved)	Further develop an understanding of the relationship between 1,000s, 100s, 10s and 1s Convert numbers such as 1,400 into 14 hundreds or 140 tens
L10 1, 10, 100 more or less (moved)	Find 1, 10 and 100 more or less than a given number (including cases that involve an exchange) Recognise which digit(s) will change	L7 1, 10, 100, 1,000 more or less	Find 1, 10, 100 and 1,000 more or less than a given number in a range of contexts Recognise which digit(s) will change
		Unit 1 Place Value - 4-digit numbers (2)	
L8 Use a number line to 1,000	Work out whether a number line goes up in 100s, 10s or 1 s Identify values and mark points on number lines that go up in $100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s	L1 Number line to 10,000	Locate and identify multiples of $1,000,100$ and 10 on number lines
Between two multiples	Identify the previous and next multiple of 100 or 10 , that come before and after a given number up to 3-digits.	L2 Between two multiples	Identify the previous and next multiple of $1,000,100$ or 10 , that come before and after a given number up to 4- digits.
WEEK 4			
L9 Estimate on a number line to 1,000	Identify numbers that lie between two points on a number line.	L3 Estimate on a number line to 10,000	Estimate the location of numbers on a number line
L11 Compare numbers to 1,000	Compare two 3-digit numbers using <, > and = signs	L4 Compare and order numbers to 10,000	Order 4-digit numbers, focusing on the value of the digits using a place value grid to support understanding.

L12 Order numbers to 1,000	Order three or more 3-digit numbers	L5 Round to the nearest 1,000	Round 4-digit numbers to the nearest 1,000
Round to the nearest 100	Round 3- numbers to the nearest 100	L6 Round to the nearest 100	Round 3 - and 4 -digit numbers to the nearest 100
Round to the nearest 10	Round 2-digit numbers to the nearest 10	L7 Round to the nearest 10	Round any 2-, 3- or 4-digit number to the nearest 10
WEEK 5			
Round to the nearest 100 or 10	Round 3-digit numbers to the nearest 100 or 10.	L8 Round to the nearest 1,000, 100 or 10	Apply knowledge of rounding to the nearest 10, 100 and 1,000 to answer a variety of problems
L13 Count in 50s	Count on and back in 50s from 0 to 1,000 Count from any multiple of 50	Count in 50s	Count on and back in 50s from any multiple of 50 . Work out how many 50s there are in a number
Addition and Subtraction			
Unit 2 Addition and Subtraction (1)		Unit 3 Addition and Subtraction	
L2 Add/subtract 1s L3 Add/subtract 10s	Add and subtract a 1-digit number to and from a 3-digit number, (not crossing 10s) Add and subtract a 10 s to and from a 3-digit number, (not crossing 100s)	Add/subtract 1s, 10s	Apply my understanding of place value to quickly make mental calculations when adding and subtracting 1s, 10s (not crossing 10s/100s) Use this to solve problems
L4 Add/subtract 100s	Add and subtract a 100 s to and from a 3-digit number	L1 Add and subtract 1s, 10s, 100s, 1,000s	Use my knowledge of place value to add and subtract 1,10 , 100 and 1,000 to and from 4digit numbers (not crossing multiples of ten)
L6 Add 1s across 10	This is the first time Y3s have seen addition in columns. (No longer taught in Y 2 at the moment) Recognise when an addition will cross a 10. Add a 1-digit number to a 3-digit number by exchanging 10 ones for 1 ten when required. Demonstrate my understanding using base 10/place value counters	Add 1s across 10 Or something else the children need to recap/ consolidate.	Recap lesson Mental fluency
WEEK 6			
L7 Add 10s across 100	Recognise when an exchange of 10 tens for 1 hundred is needed. Add multiples of 10 s to a 3-digit number. Demonstrate my understanding using base 10/place value counters	Add 10s across 100 Or something else the children need to recap/ consolidate.	Recap lesson Mental fluency
L1 Add two numbers (from Unit 3)	Use column method to add 3digit numbers (no exchange)	L2 Add two 4-digit numbers - no exchange	Add 4-digit numbers using the column method (without exchanging)
L3 Add two numbers (across 10) (from Unit 3)	Use column method to add two 3-digit numbers where exchange may be necessary, and to recognise when it is or is not necessary	L3 Add two 4-digit numbers - one exchange	Add 4-digit numbers using the column method with an exchange in one column
L4 Add two numbers (across 100) (from Unit 3)	Use column method to add 3digit numbers where exchanges may be necessary in the $1 \mathrm{~s}, 10$ s or both	L4 Add with more than one exchange	Add 4-digit numbers using the column method with exchanges across more than one column
L2 Subtract two numbers (from Unit 3)	Use column method to subtract 3-digit numbers (no exchange)	L5 Subtract two 4-digit numbers	Subtract 4-digit numbers using the column method (no exchanges)
WEEK 7			
L8 Subtract 1s across 10 NB don't get confused between using a number line and column	Understand how to exchange 1 ten for 10 ones. Use exchange of 1 ten for 10 ones to subtract a 1-digit	L6a Subtract two 4-digit numbers one exchange	Subtract 4-digit numbers using the column method where an exchange is required

subtraction. This lesson is about using a number line but explaining what is happening by using base 10 .	number from a 3-digit number where the subtraction crosses a 10 Demonstrate my understanding using a number line.		
L9 Subtract 10s across 100	Subtract a multiple of 10 from a 3-digit number, including where an exchange of 1 hundred for 10 tens is required. Demonstrate my understanding using base 10	L6b Subtract two 4-digit numbers one exchange	Subtract 4-digit numbers using the column method where an exchange is required
Unit 3 Addition and Subtraction (2)			
L5a Subtract two numbers (across 10)	Subtract 3-digit numbers using the column method where exchange is necessary across 10	L7a Subtract two 4-digit numbers - more than one exchange	Subtract 4-digit numbers using the column method where more than one exchange is required.
L5b Subtract two numbers (across 10)	Subtract 3-digit numbers using the column method where exchange is necessary across 10	L7b Subtract two 4-digit numbers - more than one exchange	Subtract 4-digit numbers using the column method where more than one exchange is required.
L6a Subtract two numbers (across 100)	Subtract 3-digit numbers using the column method where exchange is necessary across 100	L8a Exchange across two columns	Subtract 4-digit numbers using the column method with exchanges, when there is a zero in the column to be exchanged from
WEEK 8			
L6b Subtract two numbers (across 100)	Subtract 3-digit numbers using the column method where exchange is necessary across 100 Represent column subtractions involving exchange across one or two columns	L8b Exchange across two columns	Subtract 4-digit numbers using the column method with exchanges, when there is a zero in the column to be exchanged from
L7 Add a 3-digit and 2-digit number	Add a 3-digit and a 2-digit number using a written column method where exchange is needed.	Consolidation	
L8 Subtract a 2-digit number from a 3-digit number	Subtract a 2-digit number from a 3-digit number using the column method where exchange is needed.	L9 Efficient methods	Choose the most appropriate calculation method to use
L10 Estimate answers	Use a rough approximation to estimate answers to calculations by adding 100s mentally NB Y3s have learnt rounding so could apply their rounding to 100 skills.	L11 Estimate answers	Make choices about whether to round to the nearest 10,100 or 1,000 Use this to make estimates and decide if a calculation is reasonable.
L11 Inverse operations	Use inverse operations and fact families as checking strategies	L12 Check strategies	Use inverse operations to check answers to a calculation Understand that there is more than one way to check an answer (inverse, rounding, repetition)
WEEK 9			
Multiplication and Division			
Unit 4 Multiplication and Division (1)		Unit 5 Multiplication and Division (1)	
L1 Multiplication - equal groups	Recognise equal groups Write down the associated multiplication fact for equal groups	Multiplication - equal groups	Recap
L2 Use arrays	make and use arrays to represent multiplication sentences Understand that multiplication is commutative	Use arrays	Find two multiplication sentences for each array Find two division sentences for each array
L3 Multiples of 2	Identify multiples of 2 Decide whether a given number is or is not a multiple of 2	Multiples of 2	Reason with multiples of 2
L4 Multiples of 5 and 10	Identify multiples of 5 and multiples of 10	Multiples of 5 and 10	Reason with multiples of 5 and 10

	Decide whether or not a given number is a multiple of 5 or 10		
L5 Sharing and grouping	Answer sharing and grouping division questions	Sharing and grouping	Understand that sharing and grouping are both types of division and will give the same answer.
WEEK 10			
Unit 4 Multiplication and Division (2)			
L1 Multiply by 3	Understand what it means to multiply by 3 Understand the link between repeated addition, counting up in 3 s and multiplying by 3	L2a Multiply and divide by 6	Understand what it means to multiply and divide by 6 Use a range of strategies to demonstrate understanding
L2 Divide by 3	Understand what it means to divide by 3 Understand that a division sentence can be used to represent either equal grouping or sharing	L2b Multiply and divide by 6	Understand what it means to multiply and divide by 6 Use a range of strategies to demonstrate understanding
L3 The 3 times-table	Develop recall of multiplication facts and associated division facts for the 3 times-table	L3 6 times-table and division facts	Develop recall of multiplication facts and associated division facts for the 6 times-table
L4 Multiply by 4	Understand what it means to multiply by 4 Understand the link between repeated addition, counting up in 4 s and multiplying by 4	L4a Multiply and divide by 9	Understand what it means to multiply and divide by 9 Use a range of strategies to demonstrate understanding
L5 Divide by 4	Understand what it means to divide by 4 Understand that a division sentence can be used to represent either equal grouping or sharing	L4b Multiply and divide by 9	Understand what it means to multiply and divide by 9 Use a range of strategies to demonstrate understanding
WEEK 11			
L6 The 4 times-table	Develop recall of multiplication facts and associated division facts for the 4 times-table	L5 9 times-table and division facts	Develop recall of multiplication facts and associated division facts for the 9 times-table
L7 Multiply by 8	Understand what it means to multiply by 8 Understand the link between repeated addition, counting up in 3 s and multiplying by 8	L7a Multiply and divide by 7	Understand what it means to multiply and divide by 7 Use a range of strategies to demonstrate understanding
L8 Divide by 8	Understand what it means to divide by 8 Understand that a division sentence can be used to represent either equal grouping or sharing	L7b Multiply and divide by 7	Understand what it means to multiply and divide by 7 Use a range of strategies to demonstrate understanding
L9 The 8 times-table	Develop recall of multiplication facts and associated division facts for the 8 times-table	L8 7 times-table and division facts	Develop recall of multiplication facts and associated division facts for the 7 times-table
L10 Problem solving - multiplication and division (1)	Solve simple one-step multiplication and division problem Draw a simple bar model to represent the problem	L6 The 3, 6 and 9 times-tables (moved)	Explore the relationship between multiples of 3 , multiples of 6 and multiples of 9
WEEK 12 - HODDER TEST WEEK			
L11 Problem solving - multiplication and division (2)	Begin to tackle simple two- and three-step multiplication and division problems Draw a bar model to represent the problem	L9 11 and 12 times-tables and division facts	Develop recall of multiplication facts and associated division facts for the 11 and 12 timestable
Multiply by 1 and 0	Explore what happens when you multiply numbers by 0 and 1	L10 Multiply by 1 and 0	Multiply numbers by 0 and 1
Divide by 1 and itself	Explore what happens when you divide a number by 1 or by itself	L11 Divide by 1 and itself	Divide numbers by 1 Divide a number by itself
Consolidation		Consolidation	

Consolidation		Consolidation	
WEEK 13			
Multiply three numbers	Explore the commutative and associative properties of multiplication and how this can be used to make multiplying three numbers easier	L12 Multiply three numbers	Use the properties of multiplication (commutativity, associative) to recognise the most efficient way to multiply three numbers.
L12 Understand divisibility (1)	Understand that some division problems leave a remainder Begin to understand that the greatest possible remainder is 1 less than the number they are dividing by	Consolidation	
L13 Understand divisibility (2)	Begin to identify when a division will result in a remainder. Calculate a division with a remainder and write it in the form 'a remainder b'	Consolidation	
Multiples of 3	Begin to identify numbers that are multiples of 3	L1 Multiples of 3 (moved)	Name and identify numbers that are multiples of 3 . Understand that multiplication is commutative and division is not commutative. Write the multiplication and division fact families for multiples of 3 .
Consolidation		Consolidation	
Lessons that need a home - Use as consolidation lessons or in Summer2			
L1 Apply number bonds within 10 (from unit 2)		L10 Equivalent difference (from Unit 3)	Understand the equivalent difference strategy and can apply it when solving problems
L5 Spot the pattern (from unit 2)	Missing number problems (multiples of 10 only)	L13 Problem solving - one step (from Unit 3)	
L10 Making connections (from unit 2)	Mental strategies	L14 Problem solving - comparison (from Unit 3)	
L9 Complements to 100 (from unit 3)		L15 Problem solving - two steps (from Unit 3)	
L12 Problem solving (1) from Unit 3)		L16 Problem solving - multi-step Problems (from Unit 3)	
L13 Problem solving (2) from Unit 3)			

SPRING TERM

WEEK 1			
Multiplication and Division - 5 Weeks			
Unit 6 Multiplication and Division (3)		Unit 6 Multiplication and Division (2)	
L1 Multiples of 10	Find multiples of 10 Recognise 2-and 3-digit numbers that are multiples of 10. (leading onto multiplying by 10)	Multiples of 10	Recap lesson
Multiply by 10	Explore what happens to the place value of the digits in a number when it is multiplied by 10	L2 Multiply and divide by 10	Explore what happens to the place value of the digits in a number when it is multiplied or divided by 10
Divide by 10	Explore what happens to the place value of the digits in a number when it is divided by 10	L3 Multiply and divide by 100	Multiply and divide numbers by 100 Explain understanding using knowledge of place value.
L2 Related calculations	multiply by multiples of 10 using known facts and place value knowledge. E.g. $2 \times 3=6$ so $2 \times$ $30=60$	L4 Related facts - multiplication	multiply by multiples of 10 and 100 using known facts and place value knowledge.
WEEK 2			

Related calculations - division	Divide by multiples of 10 using known facts and place value knowledge.	L5 Related facts - division	Divide by multiples of 10 and 100 using known facts and place value knowledge.
Multiply and add	Discover that multiplying a number by two numbers added together is the same as doing separate multiplications and then adding the answers (known as the distributive law).	L6 Multiply and add	Discover that multiplying a number by two numbers added together is the same as doing separate multiplications and then adding the answers (known as the distributive law).
L4 Multiply 2-digits by 1-digit - no exchange	Use the expanded method to solve 2-digit numbers multiplied by 1-digit numbers	L7 Informal written methods	Use an expanded method to multiply a 2-digit number by a 1digit number
L5 Multiply 2-digits by 1-digit - exchange	Use the expanded method to multiply a 2-digit number by a 1 digit number involving grouping and exchange	L8 Multiply 2 digits by 1 digit	use a formal written method to multiply a 2-digit number by a 1digit number (expanded or column)
L6 Expanded written method	Use the expanded method of multiplication in written column format Place digits in columns and multiplying in steps before adding columns of digits Be able to explain methods and reasoning.	L9 Multiply 3 digits by 1 digit	use a formal written method to multiply a 3-digit number by a 1digit number (expanded or column)
WEEK 3			
L3 Reasoning about multiplication (moved)	Compare multiplication statements using the < and > signs.	L10 Solve multiplication problems	Solve a mixture of problems by using the formal written method Draw a bar model to represent the problem
L7 Link multiplication and division	Explore the link between multiplication and division Write down related division facts for a given multiplication fact and vice versa.	L1 Factor pairs (moved)	Find and compare factor pairs of numbers
L8 Divide 2-digits by 1-digit - no exchange	Use an understanding of place value and partitioning to divide a 2-digit number by a 1-digit number	L11 Basic division	Focus on dividing a 2-digit number where the 10s digit and the 1 s are divisible by the divisor (for example, 96 divided by 3,48 divided by 4,55 divided by 5).
L9 Divide 2-digits by 1-digit flexible partitioning	Partition a number using exchange if necessary to divide 2-digit numbers by 1-digit numbers	L13 Divide 2-digit numbers (moved)	Divide a 2-digit number by a 1digit number using flexible partitioning and by focusing on mental methods.
L10 Divide 2-digits by 1-digit with remainders	Understand that some division calculations have a remainder Use concrete and pictorial methods to determine the remainder	L12 Division and remainders	Recap the concept of remainders in division Solve division problems that leave a remainder.
WEEK 4			
Consolidation		L14 Divide 3-digit numbers	Use partitioning to divide a 3-digit number by a 1digit number
Length and Perimeter			
Unit 7 Length and Perimeter		Unit 7 Length and Perimeter	
L1 \& L2 Measure in m and cm Measure in cm and mm		Measure in m, cm, mm	Recap
L3 Metres, cm and mm		L1 Measure in km and m	
L4 Equivalent lengths (m and cm)		Equivalent lengths	Problem solving using equivalent lengths
L5 Equivalent lengths (mm and cm)		Equivalent lengths	Problem solving using equivalent lengths
WEEK 5			
L6 Compare lengths		Consolidation	Problem solving using 4 opps and length.

\square

SUMMER

